

NATIONAL SEMINAR ON
**MICROBIAL INTERACTIONS IN
AQUATIC SYSTEMS AND
ECOLOGICAL SUSTAINABILITY**

NOVEMBER 20-21, 2024

MES Ponnani College, Ponnani
South, Kerala, India

MIASES 2024

BOOK OF ABSTRACTS

Organized by
PG & RESEARCH DEPARTMENT OF AQUACULTURE AND
FISHERY MICROBIOLOGY, MES PONNANI COLLEGE

In collaboration with

Sponsored by

Mobile view

Preview

Projection

Edit

Book of Abstracts

ISBN 978-81-922264-7-7

National Seminar on

Microbial Interactions in Aquatic Systems and Ecological Sustainability (MIASES 2024)

Citation: Hatha M., Riyas A., Shanis C.P.R. and Zubair A.A. (Eds.) 2024. Book of Abstracts, National Seminar on Microbial Interactions in Aquatic Systems and Ecological Sustainability (MIASES 2024), November 20-21, Organized by PG & Research Department of Aquaculture and Fishery Microbiology MES Ponnani College, Ponnani, Kerala.

Editors:

Mohamed Hatha
Riyas A.
Rajool Shanis C.P.
Zubair A.A

Technical Support:
Aneesa K.R
Fathima Suhara K
Vidyasree K
Farisha Hassan P
Amritha S Raj
Ansha M.A

Cover page design: Sruthy I.S
Book design: Abhilash G.

Published in November 2024

Published by
**PG & Research Department of
Aquaculture and Fishery Microbiology**
MES Ponnani College, University of Calicut

Supported by:
American Society for Microbiology (ASM)

(MIASES 2024) **ORGANIZING COMMITTEE**

Patrons

Dr. P. A. Fazal Ghafoor, President, MES Kerala
Mr. O.C. Mohamed Salavudeen, Treasurer, MES Kerala
Dr. K.A Hashim, Corporate Manager, MES Kerala
Prof. Mohamed Sagir Kadiri
Dr. Zubair A.A, Principal, MES Ponnani College

Convener

Dr. Rajool Shanis C. P., PG & Research Department of Aquaculture and Fishery Microbiology

Coordinator

Dr. Riyas A., PG & Research Department of Aquaculture and Fishery Microbiology

Co-Coordinators

Muneer A, AFG, Vidyasree K (Research Scholar), Farisha Hassan P (Research Scholar),
Aneesa K R (Research Scholar), Fathima Suhara K (Research Scholar),
Amritha S Raj (Research Scholar), Ansha M A (Research Scholar), Sabari Gireesh

MIASES-T3-P-10

20-21 NOVEMBER
KERALA, INDIA

USE OF NATURAL ANTIMICROBIALS IN AQUACULTURE – A REVIEW

Sreelakshmi T.P.*¹ and Dhanya P.R.²

¹ PG & Research Department of Aquaculture and Fishery Microbiology,
MES Ponnani College, Ponnani,
² Department of Aquaculture, MES Asmabi College, P. Vemballur, 680671
*Email: sreelakshmitp9395@gmail.com

This review explores the potential of plant-based antimicrobial compounds to control bacterial diseases in aquaculture, focusing on fish pathogens. The primary objective is identifying natural alternatives to synthetic antibiotics, which are increasingly linked to antibiotic resistance and environmental contamination. Various studies were analysed to assess the efficacy of different plant extracts, such as Chinese chive oil, neem leaf extract, *Bacillus* spp. from the fish gut, Malaysian herbs, *Nigella sativa*, *Psidium guajava*, and other locally available plants, in combating bacterial infections affecting fish. Chinese chive oil, *Nigella sativa* seeds, and oil have shown promising results in controlling *Flavobacterium columnare* infections in Nile tilapia (*Oreochromis niloticus*), suggesting its use as a natural antimicrobial against columnaris disease. Neem leaf extract was evaluated for its acute lethal and sublethal effects on *Prochilodus lineatus*, demonstrating both toxicity and potential benefits when used in controlled doses. Additionally, the isolation and characterization of *Bacillus* spp. from fish gut revealed natural antimicrobial compounds with the potential to replace synthetic antibiotics in disease management. Malaysian herbs were screened in their broad spectrum for antimicrobial properties, with several showing effectiveness against pathogens, highlighting the region's biodiversity for natural antimicrobials. Including *Psidium guajava* (guava) in fish diets reduced *Aeromonas hydrophila* infections in tilapia, indicating that plant-supplemented diets could enhance fish immunity and improve health outcomes. These studies demonstrate that natural plant compounds offer effective, sustainable disease management for aquaculture and serve as eco-friendly alternatives to synthetic antibiotics. The implications of these findings are significant for the future of aquaculture. Plant-based antimicrobials could help reduce dependency on chemical antibiotics. Further research must optimize use, dosage, and safety, ensuring these antimicrobials enhance fish health and sustainable aquaculture.

Keywords: Anti-microbial compounds, Bacterial disease, Fish pathogens, Fish immunity