NAME OF THE DEPARTMENT	MATHEMATICS
PROGRAMME NAME	BSc Mathematics
FIRST SEMESTER MTS1 B01 BASIC LOGIC & NUMBER THEORY	 Prove results involving divisibility, greatest common divisor, least common multiple and a few applications. Understand the theory and method of solutions of LDE. Solve linear congruent equations. Learn three classical theorems viz.
	Wilson's theorem, Fermat's little theorem
	and Euler's theorem and a few important consequences.
SECOND SEMESTER MTS2 B02	• Define a function, describe its
CALCULUS OF SINGLE VARIABLE1	 characteristics, and evaluate functions. Determine the domain of a function using the Vertical Line Test. Understand piecewise defined functions and identify even and odd functions. Perform arithmetic operations on functions and comprehend composition of functions. Analyze graphs of transformed functions, including vertical and horizontal translations, stretching, compressing, and reflecting. Develop an intuitive understanding of limits using real-life examples. Compute limits using the laws of limits, with a focus on polynomial,

	rational, and trigonometric functions.
	• Grasp the precise definition of a limit
	using $\varepsilon - \delta$ definition and geometric
	interpretation.
	• Explore the concept of continuity,
	including continuity at a point,
	endpoint, and on an interval.
	• Understand tangent lines, rate of
	change, and the Intermediate Value
	Theorem.
THIRD SEMESTER MTS3 B03	• allows us to define its inverse
CALCULUS OF SINGLE VARIABLE2	function namely the natural
	exponential function and also the
	general exponential function
	• This enables to study a related notion
	of convergence of a series, which is
	practically done by applying several
	different tests such as integral test,
	comparison test and so on
	• get the idea of parametrization of
	curves, they learn how to calculate
	the arc length, curvature etc
	• enables them to directly calculate the
	arc length and surface areas of
	revolution of a curve whose equation
	is in polar form.
	• acquired the ability to sketch curves
	in plane and space given in vector
	valued form
FOURTH SEMESTER MTS4 B04 LINEAR	• become competent to perform matrix
ALGEBRA	algebra and also to calculate the
	inverse and determinant of a matrix

		• to understand the modern view of a
		matrix as a linear transformation
		• enables the student to understand the
		relationship among the solutions of a
		given system of linear equations and
		some important subspaces associated
		with the coefficient matrix of the
		system.
		• enable them to check whether
		diagonalization is possible.
		• realize that every symmetric matrix is
		diagonalizable and that this
		diagonalization can be done in a
		special way ie., by choosing an
		orthogonal matrix to perform the
		diagonalization
		• gives the students an opportunity to
		learn the fundamentals of linear
		algebra by capturing the ideas
		geometrically, by justifying them
		algebraically and by preparing them
		to apply it in several different fields
		such as data communication,
		computer graphics, modelling etc.
FIFTH SEMESTER MTS5	B05	• Students will be able to To engage in
ABSTRACT ALGEBRA		analyzing, solving and computing
		real world applications of finite and
		discrete mathematics
		• Demonstrate understanding of the
		relationships between abstract
		algebraic structures with familiar
		numbers systems such as the integers
		and real numbers.

	• Demonstrate understanding of and
	the ability to work within various
	algebraic structures.
	• Describe and generate groups, rings,
	and fields. Relate abstract algebraic
	constructs to more familiar number
	sets and operations and see from
	where the constructs derive.
	• Identify examples of specific
	constructs.
	• Identify and differentiate between
	different structures and understand
	how changing properties give rise to
	new structures.
	• Explain the theory behind relations
	and functions and identify domains
	and images of functions, based on the
	structures given.
	• Explain how functions may relate
	seemingly dissimilar structures to
	each other and how knowing
	properties of one structure allows 80
	us to know the same properties in the
	related structure, if certain functions
	exist between them
FIFTH SEMESTER MTS5 B06 BASIC	• to learn and deduce rigorously many
ANALYSIS	properties of real number system by
	assuming a few fundamental facts
	about it as axioms. In particular they
	will learn to prove Archimedean
	property, density theorem, existence
	of a positive square root for positive
	numbers and so on and the learning

will help them to appreciate the beauty of logical arguments and embolden them to apply it in similar and unknown problems.

- to know about sequences, their limits, • several basic and important theorems involving their sequences and applications . For example, they will learn how monotone convergence theorem can be used in establishing the divergence of the harmonic series, how it helps in the calculation of square root of positive numbers and how it establishes the existence of the transcendental number e (Euler constant).
- to understand some basic topological properties of real number system such as the concept of open and closed sets, their properties, their characterization and so on.
- to get a rigorous introduction to algebraic, geometric and topological structures of complex number functions of complex system, variable, their limit and continuity and so on. Rich use of geometry, comparison between real and complex calculus-areas where they agree and where they differ, the study of mapping properties of a few important complex functions exploring the underlying geometry

	etc. will demystify student's belief
	that complex variable theory is
	incomprehensible.c 2
FIFTH SEMESTER MTS5 B07	• Understand several methods such as
NUMERICAL ANALYSIS	bisection method. fixed point
	iteration method, regula falsi method
	etc to find out the approximate
	numerical solutions of algebraic and
	transcendental equations with desired
	accuracy.
	• Understand the concept of
	interpolation and also learn some
	well known interpolation techniques.
	• Understand a few techniques for
	numerical differentiation and
	integration and also realize their
	merits and demerits.
	• Find out numerical approximations to
	solutions of initial value problems
	and also to understand the efficiency
	of various methods.
FIFTH SEMESTER MTS5 B08 LINEAR	• solve linear programming
PROGRAMMING	problems geometrically •
	understand the drawbacks of
	geometric methods
	 solve LP problems more
	effectively using Simplex
	algorithm via the use of
	condensed tableau of A W
	Tucker
	• convert certain related
	problems, not directly
	solvable by simplex method,

	into a form that can be
	attacked by simplex method.
	• understand duality theory, a
	theory that establishes
	relationships between linear
	programming problems of
	maximization and
	minimization
	• understand game theory
	• solve transportation and
	assignment problems by
	algorithms that take
	advantage of the simpler
	nature of these problems
FIFTH SEMESTER MTS5 B09	• Understand several basic
INTRODUCTION TO GEOMETRY AND	facts about parabola,
THEORY OF EQUATIONS	hyperbola and ellipse (conics)
	such as their equation in
	standard form, focal length
	properties, and reflection
	properties, their tangents and
	normal.
	• Recognise and classify
	conics.
	• Understand Kleinian view of
	Euclidean geometry.
	• Understand affine
	transformations, the inherent
	group structure, the idea of
	parallel projections and the
	basic properties of parallel
	projections.
	• Understand the fundamental

	theorem of affine geometry.
	• Learn to solve polynomial
	equations upto degree four
SIXTH SEMESTER MTS6 B10 REAL	• State the definition of continuous
ANALYSIS	functions, formulate sequential
	criteria for continuity and prove or
	disprove continuity of functions
	using this criteria.
	 Understand several deep and
	fundamental results of continuous
	functions on intervals such as
	boundedness theorem maximum-
	minimum theorem intermediate
	value theorem preservation of
	interval theorem and so on
	Poplisa the difference between
	continuity and uniform continuity
	and equivalence of these ideas for
	functions on closed and bounded
	interval
	• Understand the significance of
	uniform continuity in continuous
	extension theorem
	• Develop the notion of Riemonn
	integrability of a function using the
	idea of tagged partitions and calculate
	the integral value of some simple
	functions using the definition
	• Understand a few basic and
	fundamental results of integration
	theory
	Eormulate Cauchy aritaria for
	• Formulate Cauchy criteria for

integrability and a few applications of it. In particular they learn to use Cauchy criteria in proving the non integrability of certain functions.

- Understand classes of functions that are always integrable
- Understand two forms of fundamental theorem of calculus and their significance in the practical problem of evaluation of an integral.
- Find a justification for 'change of variable formula' used in the practical problem of evaluation of an integral.
- Prove convergence and divergence of sequences of functions and series
- Understand the difference between pointwise and uniform convergence of sequences and series of functions
- Answer a few questions related to interchange of limits.
- Learn and find out examples/counter examples to prove or disprove the validity of several mathematical statements that arise naturally in the process/context of learning.
- Understand the notion of improper integrals, their convergence, principal value and evaluation.
- Learn the properties of and relationship among two important improper integrals namely beta and gamma functions that frequently appear in mathematics, statistics,

	science and engineering.
Sixth SEMESTER MTS6 B11 COMPLEX	• to understand the difference between
ANALYSIS	differentiability and analyticity of a
	complex function and construct
	examples.
	• to understand necessary and
	sufficient condition for checking
	analyticity.
	• to know of harmonic functions and
	their connection with analytic
	functions
	• to know a few elementary analytic
	functions of complex analysis and
	their properties.
	• to understand definition of complex
	integral, its properties and evaluation.
	• to know a few fundamental results
	on contour integration theory such as
	Cauchy's theorem, Cauchy-Goursat
	theorem and their applications.
	• to understand and apply Cauchy's
	integral formula and a few
	consequences of it such as Liouville's
	theorem, Morera's theorem and so
	forth in various situations.
	• to see the application of Cauchy's
	integral formula in the derivation of
	power series expansion of an analytic
	function.
	• to know a more general type of series
	expansion analogous to power series
	expansion viz. Laurent's series
	expansion for functions having

	singularity.
	• to understand how Laurent's series
	expansion lead to the concept of
	residue, which in turn provide
	another fruitful way to evaluate
	complex integrals and, in some cases,
	even real integrals.
	• to see another application of residue
	theory in locating the region of zeros
	of an analytic function
SIXTH SEMESTER MTS6 B1	• Understand several contexts of
CALCULUS OF MULTI VARIABLE	appearance of multivariable
	functions and their representation
	using graph and contour diagrams.
	• Formulate and work on the idea of
	limit and continuity for functions of
	several variables.
	• Understand the notion of partial
	derivative, their computation and
	interpretation.
	• Understand chain rule for calculating
	partial derivatives.
	• Get the idea of directional derivative,
	its evaluation, interpretation, and
	relationship with partial derivatives.
	• Understand the concept of gradient,
	a few of its properties, application
	and interpretation.
	• Understand the use of partial
	derivatives in getting information of
	tangent plane and normal line.
	• Calculate the maximum and
	minimum values of a multivariable

function using second derivative test and Lagrange multiplier method.

- Find a few real life applications of Lagrange multiplier method in optimization problems.
- Extend the notion of integral of a function of single variable to integral of functions of two and three variables.
- Address the practical problem of evaluation of double and triple integral using Fubini's theorem and change of variable formula.
- Realise the advantage of choosing other coordinate systems such as polar, spherical, cylindrical etc. in the evaluation of double and triple integrals.
- See a few applications of double and triple integral in the problem of finding out surface area ,mass of lamina, volume, centre of mass and so on.
- Understand the notion of a vector field, the idea of curl and divergence of a vector field, their evaluation and interpretation.
- Understand the idea of line integral and surface integral and their evaluations.
- Learn three major results viz. Green's theorem, Gauss's theorem and Stokes' theorem of multivariable

	calculus and their use in several areas
	and directions.
SIXTH SEMESTER MTS6 B13	• Students could identify a number of
DIFFERENTIAL EQUATIONS	areas where the modelling process
	results in a differential equation.
	• They will learn what an ODE is,
	what it means by its solution, how to
	classify DEs, what it means by an
	IVP and so on.
	• They will learn to solve DEs that are
	in linear, separable and in exact forms
	and also to analyse the solution.
	• They will realise the basic
	differences between linear and non
	linear DEs and also basic results that
	guarantees a solution in each case.
	• They will learn a method to
	approximate the solution
	successively of a first order IVP.
	• They will become familiar with the
	theory and method of solving a
	second order linear homogeneous
	and nonhomogeneous equation with
	constant coefficients.
	• They will learn to find out a series
	solution for homogeneous equations
	with variable coefficients near
	ordinary points.
	• Students acquire the knowledge of
	solving a differential equation using
	Laplace method which is especially
	suitable to deal with problems arising
	in engineering field.

	• Students learn the technique of
	solving partial differential equations
	using the method of separation of
	variables
SIXTH SEMESTER (Elective) MTS6 B14	• Able to Define a graph and
(E01) GRAPH THEORY	comprehend its basic components.
	• Understand the application of graphs
	as models in various contexts.
	• Explore additional definitions related
	to graphs.
	• Analyze and compute vertex degrees
	within a graph.
	• Identify and analyze subgraphs
	within a larger graph.
	• Understand the concepts of paths and
	cycles in a graph.
	• Learn the matrix representation of a
	graph up to Theorem 1.6.
	• Able to define graphs and explore
	their simple properties.
	• Understand bridges in a graph.
	• Analyze and comprehend the concept
	of spanning trees.
	• Identify cut vertices and understand
	connectivity within a graph.
	• Gain insights into the definitions and
	simple properties of graphs,
	including bridges, spanning trees,
	and cut vertices.
	• able to Understand Euler Tours and
	their applications in graphs up to
	Theorem 3.2.
	• Explore Hamiltonian Graphs and

	their properties up to Theorem 3.6.
	• Gain insights into plane and planar
	graphs, up to Theorem 5.1.
	• Understand Euler's Formula and its
	application in graph theory.
FIFTH SEMESTER (OPEN COURSE)	• Understand the concepts of slopes
MTS5 D03 LINEAR MATHEMATICAL	and equations of lines.
MODELS	• Apply linear functions in various
	real-world applications.
	• Analyze and interpret the least
	squares line for data fitting.
	• Solve systems of linear equations
	using the echelon method and the
	Gauss-Jordan method.
	• Perform operations on matrices,
	including addition, subtraction, and
	multiplication.
	• Determine matrix inverses and apply
	them in solving linear systems.
	• Utilize input-output models to
	represent and analyze real-world
	scenarios.
	• Graph linear inequalities and
	understand the graphical method in
	linear programming.
	• Solve linear programming problems
	graphically using the graphical
	method.
	• Apply linear programming concepts
	to model and solve real-world
	problems.
	• Apply the simplex method to solve

linear programming problems.
• Understand and use slack variables
and the pivot in the simplex method.
• Solve maximization and
minimization problems using the
simplex method.
• Explore duality in linear
programming.
• Analyze and solve nonstandard linear
programming problems.
•